NASA Logo

Voyager 1 and Voyager 2

Where are they now.

Both Voyager 1 and Voyager 2 have reached "interstellar space" and each continue their unique journey deeper into the cosmos. In NASA's Eyes on the Solar System app, you can see the actual spacecraft trajectories of the Voyagers updated every five minutes.

Mission Status

Instrument status.

This illustration shows the various instruments locations on the Voyager spacecraft.

Voyager 1 Present Position

Voyager 2 present position, voyager's grand tour: 1977 - today.

NASA’s Voyager 1 Resumes Sending Engineering Updates to Earth

Voyager

NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar space, or the space between stars, which it entered in 2012.

After some inventive sleuthing, the mission team can — for the first time in five months — check the health and status of the most distant human-made object in existence.

For the first time since November , NASA’s Voyager 1 spacecraft is returning usable data about the health and status of its onboard engineering systems. The next step is to enable the spacecraft to begin returning science data again. The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars).

Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally. In March, the Voyager engineering team at NASA’s Jet Propulsion Laboratory in Southern California confirmed that the issue was tied to one of the spacecraft’s three onboard computers, called the flight data subsystem (FDS). The FDS is responsible for packaging the science and engineering data before it’s sent to Earth.

After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20.

After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20.

The team discovered that a single chip responsible for storing a portion of the FDS memory — including some of the FDS computer’s software code — isn’t working. The loss of that code rendered the science and engineering data unusable. Unable to repair the chip, the team decided to place the affected code elsewhere in the FDS memory. But no single location is large enough to hold the section of code in its entirety.

So they devised a plan to divide the affected code into sections and store those sections in different places in the FDS. To make this plan work, they also needed to adjust those code sections to ensure, for example, that they all still function as a whole. Any references to the location of that code in other parts of the FDS memory needed to be updated as well.

The team started by singling out the code responsible for packaging the spacecraft’s engineering data. They sent it to its new location in the FDS memory on April 18. A radio signal takes about 22 ½ hours to reach Voyager 1, which is over 15 billion miles (24 billion kilometers) from Earth, and another 22 ½ hours for a signal to come back to Earth. When the mission flight team heard back from the spacecraft on April 20, they saw that the modification worked: For the first time in five months, they have been able to check the health and status of the spacecraft.

Get the Latest News from the Final Frontier

During the coming weeks, the team will relocate and adjust the other affected portions of the FDS software. These include the portions that will start returning science data.

Voyager 2 continues to operate normally. Launched over 46 years ago , the twin Voyager spacecraft are the longest-running and most distant spacecraft in history. Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune.

Caltech in Pasadena, California, manages JPL for NASA.

News Media Contact

Calla Cofield

Jet Propulsion Laboratory, Pasadena, Calif.

626-808-2469

[email protected]

Inside NASA's 5-month fight to save the Voyager 1 mission in interstellar space

Artist's concept depicts NASA's Voyager 1 spacecraft entering interstellar space.

After working for five months to re-establish communication with the farthest-flung human-made object in existence, NASA announced this week that the Voyager 1 probe had finally phoned home.

For the engineers and scientists who work on NASA’s longest-operating mission in space, it was a moment of joy and intense relief.

“That Saturday morning, we all came in, we’re sitting around boxes of doughnuts and waiting for the data to come back from Voyager,” said Linda Spilker, the project scientist for the Voyager 1 mission at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We knew exactly what time it was going to happen, and it got really quiet and everybody just sat there and they’re looking at the screen.”

When at long last the spacecraft returned the agency’s call, Spilker said the room erupted in celebration.

“There were cheers, people raising their hands,” she said. “And a sense of relief, too — that OK, after all this hard work and going from barely being able to have a signal coming from Voyager to being in communication again, that was a tremendous relief and a great feeling.”

Members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20.

The problem with Voyager 1 was first detected in November . At the time, NASA said it was still in contact with the spacecraft and could see that it was receiving signals from Earth. But what was being relayed back to mission controllers — including science data and information about the health of the probe and its various systems — was garbled and unreadable.

That kicked off a monthslong push to identify what had gone wrong and try to save the Voyager 1 mission.

Spilker said she and her colleagues stayed hopeful and optimistic, but the team faced enormous challenges. For one, engineers were trying to troubleshoot a spacecraft traveling in interstellar space , more than 15 billion miles away — the ultimate long-distance call.

“With Voyager 1, it takes 22 1/2 hours to get the signal up and 22 1/2 hours to get the signal back, so we’d get the commands ready, send them up, and then like two days later, you’d get the answer if it had worked or not,” Spilker said.

A Titan/Centaur-6 launch vehicle carries NASA's Voyager 1 at the Kennedy Space Center on Sept. 5, 1977.

The team eventually determined that the issue stemmed from one of the spacecraft’s three onboard computers. Spilker said a hardware failure, perhaps as a result of age or because it was hit by radiation, likely messed up a small section of code in the memory of the computer. The glitch meant Voyager 1 was unable to send coherent updates about its health and science observations.

NASA engineers determined that they would not be able to repair the chip where the mangled software is stored. And the bad code was also too large for Voyager 1's computer to store both it and any newly uploaded instructions. Because the technology aboard Voyager 1 dates back to the 1960s and 1970s, the computer’s memory pales in comparison to any modern smartphone. Spilker said it’s roughly equivalent to the amount of memory in an electronic car key.

The team found a workaround, however: They could divide up the code into smaller parts and store them in different areas of the computer’s memory. Then, they could reprogram the section that needed fixing while ensuring that the entire system still worked cohesively.

That was a feat, because the longevity of the Voyager mission means there are no working test beds or simulators here on Earth to test the new bits of code before they are sent to the spacecraft.

“There were three different people looking through line by line of the patch of the code we were going to send up, looking for anything that they had missed,” Spilker said. “And so it was sort of an eyes-only check of the software that we sent up.”

The hard work paid off.

NASA reported the happy development Monday, writing in a post on X : “Sounding a little more like yourself, #Voyager1.” The spacecraft’s own social media account responded , saying, “Hi, it’s me.”

So far, the team has determined that Voyager 1 is healthy and operating normally. Spilker said the probe’s scientific instruments are on and appear to be working, but it will take some time for Voyager 1 to resume sending back science data.

Voyager 1 and its twin, the Voyager 2 probe, each launched in 1977 on missions to study the outer solar system. As it sped through the cosmos, Voyager 1 flew by Jupiter and Saturn, studying the planets’ moons up close and snapping images along the way.

Voyager 2, which is 12.6 billion miles away, had close encounters with Jupiter, Saturn, Uranus and Neptune and continues to operate as normal.

In 2012, Voyager 1 ventured beyond the solar system , becoming the first human-made object to enter interstellar space, or the space between stars. Voyager 2 followed suit in 2018.

Spilker, who first began working on the Voyager missions when she graduated college in 1977, said the missions could last into the 2030s. Eventually, though, the probes will run out of power or their components will simply be too old to continue operating.

Spilker said it will be tough to finally close out the missions someday, but Voyager 1 and 2 will live on as “our silent ambassadors.”

Both probes carry time capsules with them — messages on gold-plated copper disks that are collectively known as The Golden Record . The disks contain images and sounds that represent life on Earth and humanity’s culture, including snippets of music, animal sounds, laughter and recorded greetings in different languages. The idea is for the probes to carry the messages until they are possibly found by spacefarers in the distant future.

“Maybe in 40,000 years or so, they will be getting relatively close to another star,” Spilker said, “and they could be found at that point.”

where is voyager 1 right now 2022

Denise Chow is a reporter for NBC News Science focused on general science and climate change.

where is voyager 1 right now 2022

  • Object Information
  • Planetarium

where is voyager 1 right now 2022

Voyager 1 live position and data

This page shows Voyager 1 location and other relevant astronomical data in real time. The celestial coordinates, magnitude, distances and speed are updated in real time and are computed using high quality data sets provided by the JPL Horizons ephemeris service (see acknowledgements for details). The sky map shown in the background represents a rectangular portion of the sky 60x40 arcminutes wide. By comparison the diameter of the full Moon is about 30 arcmins, so the full horizontal extent of the map is approximately 2 full Moons wide. Depending on the device you are using, the map can be dragged horizondally or vertically using the mouse or touchscreen. The deep sky image in the background is provided by the Digitized Sky Survey ( acknowledgements ).

Current close conjunctions

List of bright objects (stars brighter than magnitude 9.0 and galaxies brighter than magmitude 14.0) close to Voyager 1 (less than 1.5 degrees):

Additional resources

  • 15 Days Ephemerides
  • Interactive Sky Map (Planetarium)
  • Rise & Set Times
  • Distance from Earth

Astronomy databases

  • The Digitized Sky Survey, a photographic survey of the whole sky created using images from different telescopes, including the Oschin Schmidt Telescope on Palomar Mountain
  • The Hipparcos Star Catalogue, containing more than 100.000 bright stars
  • The PGC 2003 Catalogue, containing information about 1 million galaxies
  • The GSC 2.3 Catalogue, containing information about more than 2 billion stars and galaxies

NEWS... BUT NOT AS YOU KNOW IT

Nasa Voyager 1: What does it do and where in space is it right now?

author image

Share this with

Voyager 1 Space Probe

Nasa’s spacecraft Voyager 1 has been travelling in interstellar space for more than a decade.

Unsurprisingly, its findings pique the interest of scientists and… just about everybody else, given that it is the farthest manmade object from Earth, going further than any probe in history.

It is back in the news as of May 2022 – as Nasa reveals it has been sending back puzzling data .

Information from the probe’s attitude articulation and control system (AACS) doesn’t quite add up with what’s happening on board, apparently, leaving experts confused.

Back in 2021, Voyager 1 made headlines for picking up a faint hum coming from beyond the edge of our solar system .

Curious? Understandably so. Here’s a bit more information about Voyager 1.

What is Nasa Voyager 1 and what does it do?

Voyager 1 launched in 1977, along with another Nasa space probe called Voyager 2.

It initially travelled through our solar system, reaching interstellar space – beyond the heliosphere, ‘a protective bubble’ created by our solar system’s star, the Sun – in 2012.

Voyager 1 is the first probe to have reached interstellar space, with another spacecraft Pioneer 10 and also Voyager 2 making the fateful crossing at later dates.

Originally, the probe was designed to explore planets in the outer reaches of the solar system, Jupiter and Saturn, but has continued to operate far longer than expected.

Voyager 1 sends back different types of data to Earth, with significant discoveries emerging in the 1970s/1980s.

It discovered two Jupiter moons, Thebe and Metis, as well as a thin ring around the planet. Upon reaching Saturn, it found a new G-ring plus five then-unknown moons.

Voyager 1 then took around 60 incredible ‘family portraits’ of the Sun with its planets in 1990, at which point the camera was turned off – to save energy for the interstellar mission announced that year.

Nasa says that one major goal for the mission was to collect data regarding the transition from the heliosphere, through the heliopause and into interstellar space.

Just in case the probe runs into any aliens, it contains a vinyl-like disc of greetings in human languages, sounds from Earth and a message from then US president Jimmy Carter.

Symbols showing how to play the disc using a needle and cartridge are also included.

Saturnian System From Voyager 1

A full timeline of Voyager 1’s history is available on Nasa’s website .

Where exactly in space is the Nasa Voyager 1?

Voyager 1 is nearly 14.5 billion miles – or 155.6 astronomical units (AU) – away from planet Earth. It’s already more than 14.5 billion miles from the Sun.

These numbers continue to increase, as the probe is moving fast. You can see its progress on the live Nasa Mission Status tracker .

Eventually, Voyager 1 will reach other destinations in thousands of years’ time.

Aquila, Serpens and Ophiuchus in the summer sky

Nasa’s website reads: ‘In about 40,000 years, Voyager 1 will drift within 1.6 light years (9.3 trillion miles) of AC+79 3888, a star in the constellation of Camelopardalis which is heading toward the constellation Ophiuchus.’

However, it (obviously) won’t be sending home data then. Nasa says science data is expected to stop around 2025.

MORE : Nasa puzzled by ‘mysterious’ signals from Voyager space probe

MORE : Nasa warns asteroid larger than two football pitches is heading towards Earth

Follow Metro across our social channels, on Facebook , Twitter and Instagram

Share your views in the comments below

Sign Up for News Updates

Get your need-to-know latest news, feel-good stories, analysis and more.

Privacy Policy

Metro on WhatsApp

Get us in your feed

14.6 billion miles away, NASA gets Voyager 1 talking again — and discovers a new mystery

That’s some repair job.

An artist's impression (circa 1977) of the trajectory to be taken by NASA's Voyager 1 and Voyager 2 ...

NASA’s Voyager 1 is on a fraught and unknowable journey into deep space. Some 14.6 billion miles from Earth, it and its sister craft, Voyager 2, are the furthest human-made objects from our planet, having made it beyond the edges of the Solar System and out into the interstellar medium. At such distances, anything can go wrong. Add to that the fact that these are old craft: The Voyagers launched in the 1970s. So when Voyager 1 started to send home weird, garbled nonsense instead of telemetry data in May of this year , NASA engineers might have been forgiven for calling it a day and pouring one out for perhaps the most successful space mission of all time.

But that’s not how NASA works . Instead, they started working on a remote diagnosis and fix for the record-breaking spacecraft. Now, some four months later, they are triumphant. Voyager 1 is back online and communicating perfectly with ground control as if it never happened. In fact, the fix turned out to be relatively simple — or as simple as anything can be with a 22-hour communications lag in each direction and billions of miles of space in between.

What happened to Voyager 1?

color illustration of a spacecraft in space with a large radio antenna on the left side

The high-gain antenna, shown on the left in this illustration, is how Voyager 1 sends and receives radio communications with NASA engineers here on Earth.

Cruising in interstellar space, the 45-year-old spacecraft appeared to be operating shockingly well and was transmitting reams of data back to Earth. But in mid-May, Voyager 1’s onboard system responsible for keeping its high-gain antenna pointed at Earth, known as the attitude articulation and control system, or AACS, started beaming home confusing jumbles of data instead of the usual reports about the spacecraft’s health and status. From our viewpoint, it appeared as if the spacecraft had developed something like an electronic version of aphasia — a condition that causes the loss of fluent speech.

“The data may appear to be randomly generated, or does not reflect any possible state the AACS could be in,” explained NASA in a statement from the time.

Even more bafflingly for engineers, Voyager 1 appeared to be in perfect condition despite the spacecraft’s bizarre status reports. The radio signal from the ship remained strong and steady, which meant the antenna was still pointed at Earth — and not in whatever configuration the AACS was claiming it was in to NASA in the reports. Similarly, Voyager 1’s science systems kept gathering and transmitting data as usual, without any of the same strangeness affecting the AACS. And, whatever was wrong with the AACS didn’t trip a fault protection system designed to put the spacecraft in safe mode when there’s a glitch.

Thankfully, NASA engineers diagnosed the problem. And with the diagnosis, they could employ a cure.

The fix — It turned out that the AACS had started sending its telemetry data via an onboard computer that had stopped working years ago. The dead computer corrupted all the outgoing data. All NASA engineers had to do was send the command to the AACS to use the correct computer to send its data home.

But there’s still a problem — The next challenge will be to figure out exactly what caused the AACS to switch computers in the first place. NASA says the system probably received a faulty command from another onboard computer. While they say it is not a major concern for Voyager 1’s well-being right now, the true culprit will need to be found and fixed to prevent future weirdness.

Voyager 1 lives on

Colour photograph of the planet Saturn, taken from Voyager 1. Voyager 1 is a space probe launched by...

Voyager 1 has yielded revelations about our Solar System no one could have predicted.

Currently, Voyager 1 is more than 23.4 billion kilometers or 14.6 billion miles (and gaining, most of the time ) from Earth. You can watch the distance grow and see both Voyager spacecraft’s current positions in space on NASA’s website .

For the last decade, Voyager 1 has been cruising in interstellar space, beyond the reach of our Sun’s magnetic field. The field had offered the craft a little protection from cosmic rays and other interstellar radiation, much as Earth’s magnetic field offers some protection from high-energy particles and radiation from the Sun. Cosmic rays are known to interfere with electronics here on Earth — when one of those high-speed energetic particles strikes a computer chip, it can cause small memory errors, which add up over time — and it’s reasonable to expect that to be an issue for Voyager 1’s onboard computers, too.

“A mystery like this is sort of par for the course at this stage of the Voyager mission,” said Voyager 1 and 2 project manager Suzanne Dodd in a statement dated to May.

“The spacecraft are both almost 45 years old, which is far beyond what the mission planners anticipated. We’re also in interstellar space — a high-radiation environment that no spacecraft have flown in before.”

We’ll need to wait and see what new perils encounter Voyager next on its travels — and what new discoveries await.

Subscribe for free to Inverse’s award-winning daily newsletter.

This article was originally published on Aug. 31, 2022

  • Space Science

where is voyager 1 right now 2022

  • AAC Clyde Space
  • Alaska Space
  • Alba Orbital
  • Anders Povlsen
  • Astra Space
  • Black Arrow
  • Blue Origin
  • Catriona Francis
  • Chris Larmour
  • Climate Change
  • Copenhagen Suborbitals
  • Craig Clark
  • Elecnor Deimos
  • Electron Rocket
  • European Space Agency
  • Frank Strang
  • Firefly Aerospace
  • Gilmour Space Technologies
  • Highlands & Islands Enterprise
  • Horizontal Launch
  • ISAR Aerospace
  • Kodiak rocket Launch
  • Kristian Von Bengtson
  • Laura Edison
  • Llandebr Space Centre
  • Lockheed Martin
  • New Shepard
  • Orbex Space
  • Peter Guthrie
  • Peter Madsen
  • Prestwick Spaceport
  • Proton Rocket
  • Richard Branson
  • Rocket Explosion
  • Rocket Factory Augsburg
  • Rocket Launch
  • Satellite Launches
  • Scottish Spaceport
  • Shetland Space Centre (SaxaVord)
  • Skylark Nano
  • Small Satellites
  • Snowdonia spaceport
  • Space Apprenticeship
  • Space Careers
  • Space Debris
  • Space Scholarship
  • Space Tech Expo
  • Space Tourism
  • Spaceport Cornwall
  • Sutherland Spaceport
  • UK Space Agency
  • UK Space Conference
  • UK Space Race
  • UK Spaceport
  • Vertical Launch
  • Virgin Galactic
  • Virgin Orbit
  • Volodymyr Levykin

[UPDATED] Voyager 1 Is Back In Action! – Where Is Voyager 1 Now In 2024

[UPDATED] Voyager 1 Is Back In Action! – Where Is Voyager 1 Now In 2024

2022 marks the 45th anniversary of NASA launching one of its most successful projects, the automatic spacecraft Voyager 1. The probe not only coped with the interplanetary mission brilliantly but also provided scientists with a large amount of valuable information about the heliosphere and interstellar space. Soon, spacecraft may fail, but even after that, it will continue to serve for the benefit of humanity, carrying out a diplomatic mission. And while NASA knows the Voyager 1 location and what is happening to the probe, the interest in Voyager persists. Let’s find out more about this spacecraft.

UPDATE 22 APRIL: Voyager 1 Reconnects With Earth After Months of Silence

In a remarkable turn of events, NASA’s Voyager 1 spacecraft, the furthest human-made object from Earth, has reestablished contact with its home planet after months of silence. Launched in 1977, Voyager 1 has surpassed all expectations, venturing deeper into interstellar space than ever imagined.

After an extended period of communication blackout, Voyager 1 has finally “phoned home,” transmitting vital information about its onboard systems. While it’s not yet sending scientific data, the spacecraft is providing valuable insights into its health and operational status.

Voyager 1 Loses Contact: What causes the communication breakdown?

Voyager 1 has been suffering a communication malfunction since 14 November 2023. The legendary spacecraft hasn’t responded in 3 months. The mission team is increasingly worried about the possibility of the distant spacecraft being unable to recover.

The engineering team is actively working to resolve the issue. However, the challenges lie in both software limitations and the vast distance between Voyager 1 and its terrestrial controllers, making the resolution of the problem a complex undertaking.

Voyager 1 has started to experience a disruption in communication with its mission team on Earth due to a computer malfunction. On 14 November 2023, the NASA team noticed the issue. The spacecraft possesses three onboard computers. One of them collects data from scientific instruments and combines it with engineering data about Voyager 1’s current health status. This information is transmitted to Earth in binary code. However, the flight data system is currently stuck in a loop, sending a repetitive pattern of ones and zeroes. 

While Voyager 1 can receive and execute commands sent by the mission team, there is a problem with the telecommunications unit. It hinders the transmission of any scientific or engineering data from Voyager 1 back to Earth.

Moreover, the transmission of commands takes approximately 22.5 hours to reach the spacecraft. Also, there is an additional waiting period of 45 hours to receive a response from Voyager. This significant time delay poses a challenge for the team in managing and troubleshooting the current communication issue.

How much time will it take to resolve the problem?

Over a three-month period, the Voyager team attempted to restart the flight data system through commands. But as of now, they received no usable data. The further investigative process might extend over the course of several weeks.

Where did Voyager 1 go?

The primary mission was to fly around Saturn and Jupiter to study their satellite rings, magnetic fields, and weather. Voyager did an excellent job with this task, providing detailed images of the planets. At the time, no one could boast of such results, not even the USA’s main competitor, the USSR.

The second part of the mission was to search for and explore the boundaries of near-solar space and measure particles in the solar wind. Then, upon successful completion of the task, the probe had to move further and begin studying the interstellar medium. Skipping ahead, let’s say that the spacecraft exceeded all expectations, both in achieving the tasks set by the scientists and in the duration of work in deep space.

When did Voyager 1 launch?

Voyager 1 was launched on a Titan IIIE rocket from Cape Canaveral on September 5, 1977. Interestingly, there were two missions, Voyager 1 and 2. And the second Voyager was launched 16 days earlier than the first, on August 20.

It would be more logical to number the spacecraft in reverse, but the numbering order was defined by which spacecraft would be the first to meet Jupiter. So, Voyager 1 was supposed to reach Jupiter on March 5, 1979, and Voyager 2 — four months later, on July 9 of the same year.

How big is Voyager 1?

COnstruction of Voyager 1

The spacecraft had a launch weight of 798 kg, a length of 2.5 m, and a payload mass of 86 kg. The body is a ten-facet prism, equipped with two antennas, a rod for electric generators, a rod with scientific instruments, and a separate rod for a magnetometer. The casing and equipment are supplemented by thermal insulation, heat shields, and plastic hoods.

Considering that the probe would operate far from the Sun, using solar panels would be pointless. Power is provided by three radioisotope thermoelectric generators operating on plutonium-238 oxide.

How fast is it travelling?

The speed of Voyager-1 at launch was 17 km/s, so it quickly reached Jupiter and began surveying the planet in January 1979. It approached Saturn in November 1980.

In August 2012, the probe became the first spacecraft to reach interstellar space. This fact was confirmed when the sensors recorded the influence of coronal mass ejections from the Sun in the form of a “tsunami wave”.

In 2017, the probe was recognized as the fastest spacecraft to leave our solar system. Even though the New Horizons probe, with a higher launch speed, was sent to Pluto in January 2006, Voyager 1 has beaten it in speed thanks to carefully calculated gravity manoeuvres. NASA claims that the spacecraft travels an average of 523 million kilometres a year.

How far away is it?

How far is Voyager 1

Voyager 1 is the most distant spacecraft ever launched by a man from Earth into space. We don’t really know exactly where the craft is now. According to NASA official data, as of February 17, 1998, the probe moved 10.4 billion km away from our planet.

In 2013, some media sources wrote that Voyager 1 will be leaving the solar system. However, this information was wrong. In fact, the probe only went beyond the solar wind. It will leave the solar system in about 30,000 years.

How far has Voyager 1 gone as of today?

Voyager 1 is currently zipping through space at around 38,000 mph (17 kilometers per second), according to NASA Jet Propulsion Laboratory. It is currently the farthest human-made object from Earth. As of February 2024, Voyager 1 is more than 24 billion km away from Earth. The distance between Voyager and the Earth differs in different periods of the year. This is because the speed of the planet in its orbit around the Sun exceeds the speed of the spacecraft moving away from it.

Will Voyager 1 ever leave the Milky Way?

The Milky Way is a vast galaxy with a diameter of about 100,000 light-years. With Voyager 1’s current speed, it would take tens of thousands of years to travel even a small fraction of the Milky Way’s distance.

As of now, Voyager 1 is not on a trajectory that will take it out of the Milky Way. Its path is primarily influenced by the Sun’s gravitational field, and its velocity is not sufficient to overcome the gravitational pull of the Milky Way’s stars and dark matter. So, it’s unlikely that Voyager 1 will ever leave the Milky Way in the foreseeable future.

Is Voyager 1 still transmitting?

Many people ask this reasonable question: Did we lose contact with Voyager 1 because it has been ploughing the expanses of space for almost half a century! The probe made its last image of the Earth in 1990. The picture was called A Pale Blue Dot . Voyager 1 was about 4 billion miles from Earth when it captured its portrait. Caught in the centre of scattered light rays (the result of shooting so close to the Sun), the Earth appears as a tiny dot of light, a crescent moon only 0.12 pixels in size. After that, the ship’s cameras were turned off in order to save energy for the operation of other equipment and continue with the interstellar space exploration.

Is Voyager 1 still active in 2023?

So is Voyager 1 still active? Yes! In 2021, the probe transmitted data on the detection of interstellar sounds and the measurement of the matter density in space. As long as Voyager 1 remains healthy, it’s likely the probe will continue its record-breaking missions for years to come.

Can Voyager 1 still take pictures?

Voyager 1 is equipped with several instruments, including cameras, that were used to capture images of planets and other celestial bodies during its mission within the solar system. However, as Voyager 1 has moved beyond the outer planets and into interstellar space, the distance from Earth and the limited power available to the spacecraft have significantly impacted its ability to take pictures. This has led to the shutdown of certain instruments and systems to conserve power for the primary communications and scientific instruments.

When will Voyager 1 die?

Voyager’s energy sources are constantly cooling and depleted, so today, they can no longer properly maintain the static temperature of the hardware. There are still four devices operating on board. However, when the power runs out, the probe will stop transmitting signals to the ground station.

NASA engineers claim that the spacecraft retains around 70% of its fuel is left on the ship, which should keep it operational until 2025. However, no one knows what other factors may affect the probe’s functionality in outer space.

How long will Voyager 1 battery last?

By 2025, the probe’s batteries are expected to be fully depleted. To conserve energy and prolong its operational life, NASA has been deactivating the spacecraft’s onboard systems. Currently, Voyager 1 retains four functioning instruments, all powered by Radioisotope Thermoelectric Generators (RITEGs), nuclear batteries that convert plutonium’s decay heat into electricity. However, due to a decline in power output over 44 years, NASA has shifted them into an economy mode. Engineers disabled the cosmic ray detector’s heater two years ago, a critical component for identifying the heliopause crossing.

Where will Voyager 1 be in 300 years?

Predicting Voyager 1’s exact location 300 years into the future is extremely challenging due to the complex interactions of gravitational forces and the dynamic nature of space. However, based on its current trajectory and velocity, it’s reasonable to assume that Voyager 1 will continue its journey through interstellar space within our Milky Way galaxy.

According to NASA, in about 300 years from now, Voyager 1 will enter the Oort Cloud, a spherical band far beyond Pluto’s orbit that’s full of billions of frozen comets. It will take another 30,000 years to reach the end of it.

Interesting facts about Voyager 1

Even after Voyager 1 cuts its cord with humanity it will continue to carry out an important diplomatic mission. The spacecraft has a gilded plate, called Voyager Golden Record , attached to its body. It contains a message for aliens in fifty different languages. The recording also carries music, sounds of nature, photographs of people, the Earth, cars, and aircraft. It carries the coordinates of the Earth so that another civilization can discover its location. In other words, Voyager 1 can still serve the benefit of mankind even outside of the Solar system.

How has Voyager 1 not hit anything?

Voyager 1’s remarkable avoidance of collisions during its journey through space can be attributed to a combination of factors. The vast expanse of the universe plays a significant role, as the immense distances between celestial bodies in the Milky Way mean that the likelihood of Voyager 1 encountering anything substantial is extraordinarily low. Additionally, the sparse distribution of matter in interstellar space further decreases the chances of collision. Meticulous trajectory planning by NASA’s experts has also been crucial. By utilizing intricate calculations and simulations, they’ve navigated the spacecraft through safe paths that circumvent known objects.

What happened to Voyager-1 in May 2022?

In May 2022, NASA recorded strange signals from Voyager-1. Mission specialists managed to find out that the device is still operating normally, but the readings of the articulation and attitude control system of the probe (AACS) do not reflect the real situation on board.

The AACS module is responsible for pointing the Voyager-1 antenna exactly at Earth, allowing the probe to send telemetry data. However, suddenly this data started to display incorrectly. Subsequent diagnostics revealed that, for some reason, AACS switched to another computer that stopped working several years ago, which distorted newly transmitted data. In August, NASA reported fixing this problem. A command was sent to AACS to switch to the correct computer, and it began to transmit correct telemetry data again. NASA suggests that AACS received an erroneous command from another computer (there are three of them on board Voyager-1), which may indicate that the main cause of the failure is somewhere else on the ship.

“We are happy that telemetry is back,” said the head of the mission, Suzanne Dodd. “Our team will perform a full read of the AACS memory and analyse its operation, which will help determine the exact cause that led to the distortion of the telemetry data.” At the same time, Dodd added that mission engineers do not see the incident as a long-term threat to Voyager-1 and are generally cautiously optimistic, although they still have to do more research.

Voyager 1 timeline

  • 1977 – Launch year of Voyager 1.
  • 1979 – The first detailed images of Jupiter, evidence of the first active volcanoes outside the Earth present on the Io satellite.
  • 1981 – Discovery of three of Saturn’s satellites – Pandora, Prometheus and Atlas.
  • 1982 – Correction of the engines operation to maximize the probe’s distance from Earth to put it outside the solar system.
  • 1990 – The first “family portrait” of the solar system, including the Earth.
  • 1998 – Voyager became the furthest from Earth human-made object.
  • 2005 – It overcame the last shock wave, which was formed when the interstellar wind collided with the solar one. After that, no terrestrial computer can read his data.
  • 2012 – Became the first spacecraft to enter interstellar space. Measured the plasma readings in interstellar space with maximum accuracy.
  • 2017 – NASA engineers activated the probe’s thrusters to correct the spacecraft’s course and extend its lifespan.
  • 2021 – Voyager 1 recent discoveries confirmed the scientists’ guess that there is more activity in the interstellar gas than in the solar wind.
  • 2022 – In May, Voyager began sending incorrect telemetry data back to Earth, allegedly due to a computer system malfunction. Three months later, NASA reported that the problem had been fixed.

' src=

Richard is an established commentator with a strong political background and a career that has spanned across the energy sector (oil, gas & renewable energy) as well as the space industry (satellites, launch & telemetry). He is a self-proclaimed environmental campaigner and is particularly enthusiastic about the role that the Scottish space industry will play in tackling the climate emergency that is happening around the world.

Cancel reply

Thank you for your comment! It will be visible on the site after moderation.

Related Articles

Take Photos Of Clouds For NASA: How You Can Help Predict Weather With Your Phone Camera?

Take Photos Of Clouds For NASA: How You Can Help Predict Weather With Your Phone Camera?

Firefly Alpha rocket launch dates, history and schedule

Firefly Alpha rocket launch dates, history and schedule

UFO Sightings now a Topic for NASA Research

UFO Sightings now a Topic for NASA Research

Explore orbital today.

Has Anyone Ever Floated Away in Space?

Has Anyone Ever Floated Away in Space?

PLD Space Profile: Future Small Satellite Launcher

PLD Space Profile: Future Small Satellite Launcher

OT Interviews: Five Questions With UAE Space Agency Executive Director Ibrahim Al Qasim

OT Interviews: Five Questions With UAE Space Agency Executive Director Ibrahim Al Qasim

By continuing to use orbitaltoday.com you will be agreeing to the website Terms and Conditions and the Use of Cookies while using the website and our services. Please also read our Privacy Policy under which, to the extent stated, you consent to the processing of your personal data.

The remarkable twin Voyager spacecraft continue to explore the outer reaches of the solar system decades after they completed their surveys of the Outer Planets.  Launched in 1977 (September 5 for Voyager 1 (V1) and August 20 for Voyager 2 (V2), whose trajectory took it past Jupiter after Voyager 1), the spacecraft pair made many fundamental discoveries as they flew past Jupiter (March 1979 for V1, July 1979 for V2) and Saturn (November 1980 for V1, August 1981 for V2).  The path of Voyager 2 past Saturn was targeted so that it continued within the plane of the solar system, allowing it to become the first spacecraft to visit Uranus (January 1986) and Neptune (August 1989).  Following the Neptune encounter, both spacecraft started a new phase of exploration under the intriguing title of the Voyager Interstellar Mission.

Voyager Spacecraft

Five instruments continue to collect important measurements of magnetic fields, plasmas, and charged particles as both spacecraft explore different portions of the solar system beyond the orbits of the planets.  Voyager 1 is now more than 118 astronomical units (one AU is equal to the average orbital distance of Earth from the Sun) distant from the sun, traveling at a speed (relative to the sun) of 17.1 kilometers per second (10.6 miles per second).  Voyager 2 is now more than 96 AU from the sun, traveling at a speed of 15.5 kilometers per second (9.6 miles per second).  Both spacecraft are moving considerably faster than Pioneers 10 and 11, two earlier spacecraft that became the first robotic visitors to fly past Jupiter and Saturn in the mid-70s.

Jupiter

This processed color image of Jupiter was produced in 1990 by the U.S. Geological Survey from a Voyager image captured in 1979. The colors have been enhanced to bring out detail. Zones of light-colored, ascending clouds alternate with bands of dark, descending clouds. The clouds travel around the planet in alternating eastward and westward belts at speeds of up to 540 kilometers per hour. Tremendous storms as big as Earthly continents surge around the planet. The Great Red Spot (oval shape toward the lower-left) is an enormous anticyclonic storm that drifts along its belt, eventually circling the entire planet.

As seen in the night sky at Earth, Voyager 1 is within the confines of the constellation Ophiuchus, only slightly above the celestial equator; no telescope can see it, but radio contact is expected to be maintained for at least the next ten years.  Voyager 2 is within the bounds of the constellation Telescopium (which somehow sounds quite appropriate) in the far southern night sky.

Heliosphere

Both spacecraft have already passed something called the Termination Shock † (December 2004 for V1, August 2007 for V2), where the solar wind slows as it starts to interact with the particles and fields present between the stars.  It is expected that both spacecraft will encounter the Heliopause, where the solar wind ceases as true interstellar space begins, from 10 to 20 years after crossing the Termination Shock.  Theories exist for what should be present in interstellar space, but the Voyagers will become the first man-made objects to go beyond the influences of the Sun, hopefully returning the first measurements of what it is like out there.  Each spacecraft is carrying a metal record with encoded sounds and sights from Earth, along with the needle needed to read the recordings, and simplified instructions for where the spacecraft came from, in case they are eventually discovered by intelligent extra-terrestrials.

Voyager Record

Keep track of the Voyager spacecraft on the official  Voyager Interstellar Mission website or follow  @NASAVoyager2 on Twitter.    † The sun ejects a continuous stream of charged particles (electrons, protons, etc) that is collectively termed the solar wind.  The particles are traveling extremely fast and are dense enough to form a very tenuous atmosphere; the heliosphere represents the volume of space where the effects of the solar wind dominate over those of particles in interstellar space.  The solar wind particles are moving very much faster than the local speed of sound represented by their low volume density.  When the particles begin to interact with interstellar particles and fields (the interaction can be either physically running into other particles or experiencing an electromagnetic force resulting from a charged particle moving within a magnetic field), then they start to slow down.  The point at which they become subsonic (rather than their normal hypersonic speed) is the Termination Shock.

We rely on the generous support of donors, sponsors, members, and other benefactors to share the history and impact of aviation and spaceflight, educate the public, and inspire future generations.  With your help, we can continue to preserve and safeguard the world’s most comprehensive collection of artifacts representing the great achievements of flight and space exploration.

  • Get Involved
  • Host an Event

Thank you. You have successfully signed up for our newsletter.

Error message, sorry, there was a problem. please ensure your details are valid and try again..

  • Free Timed-Entry Passes Required
  • Terms of Use

NASA's interstellar Voyager 1 spacecraft isn't doing so well — here's what we know

Since late 2023, engineers have been trying to get the Voyager spacecraft back online.

Voyager 1 rendering of the craft out in space, on the right side of the image.

On Dec. 12, 2023, NASA shared some worrisome news about Voyager 1, the first probe to walk away from our solar system 's gravitational party and enter the isolation of interstellar space . Surrounded by darkness, Voyager 1 seems to be glitching. 

It has been out there for more than 45 years, having supplied us with a bounty of treasure like the discovery of two new moons of Jupiter, another incredible ring of Saturn and the warm feeling that comes from knowing pieces of our lives will drift across the cosmos even after we're gone. (See: The Golden Record .) But now, Voyager 1 's fate seems to be uncertain.

As of Feb. 6, NASA said the team remains working on bringing the spacecraft back to proper health. "Engineers are still working to resolve a data issue on Voyager 1," NASA's Jet Propulsion Laboratory said in a post on X (formerly Twitter). "We can talk to the spacecraft, and it can hear us, but it's a slow process given the spacecraft's incredible distance from Earth."

Related: NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

So, on the bright side, even though Voyager 1 sits so utterly far away from us, ground control can actually communicate with it. In fact, last year, scientists beamed some software updates to the spacecraft as well as its counterpart, Voyager 2 , from billions of miles away. Though on the dimmer side, due to that distance, a single back-and-forth communication between Voyager 1 and anyone on Earth takes a total of 45 hours. If NASA finds a solution, it won't be for some time .

The issue, engineers realized, has to do with one of Voyager 1's onboard computers known as the Flight Data System, or FDS. (The backup FDS stopped working in 1981.)

"The FDS is not communicating properly with one of the probe's subsystems, called the telemetry modulation unit (TMU)," NASA said in a blog post. "As a result, no science or engineering data is being sent back to Earth." This is of course despite the fact that ground control can indeed send information to Voyager 1, which, at the time of writing this article , sits about 162 AU's from our planet. One AU is equal to the distance between the Earth and the sun , or 149,597,870.7 kilometers (92,955,807.3 miles).

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

From the beginning 

Voyager 1's FDS dilemma was first noticed last year , after the probe's TMU stopped sending back clear data and started procuring a bunch of rubbish. 

As NASA explains in the blog post, one of the FDS' core jobs is to collect information about the spacecraft itself, in terms of its health and general status. "It then combines that information into a single data 'package' to be sent back to Earth by the TMU," the post says. "The data is in the form of ones and zeros, or binary code." 

However, the TMU seemed to be shuffling back a non-intelligible version of binary code recently. Or, as the team puts it, it seems like the system is "stuck." Yes, the engineers tried turning it off and on again. 

That didn't work. 

— SpaceX's Starship to launch 'Starlab' private space station in late 2020s

— Wonder what it's like to fall into Uranus? These scientists do, too

— Scientists' predictions for the long-term future of the Voyager Golden Records will blow your mind

Then, in early February, Suzanne Dodd, Voyager project manager at NASA's Jet Propulsion Laboratory, told Ars Technica that the team might have pinpointed what's going on with the FDS at last. The theory is that the problem lies somewhere with the FDS' memory; there might be a computer bit that got corrupted. Unfortunately, though, because the FDS and TMU work together to relay information about the spacecraft's health, engineers are having a hard time figuring out where exactly the possible corruption may exist. The messenger is the one that needs a messenger.

They do know, however, that the spacecraft must be alive because they are receiving what's known as a "carrier tone." Carrier tone wavelengths don't carry information, but they are signals nonetheless, akin to a heartbeat. It's also worth considering that Voyager 1 has experienced problems before, such as in 2022 when the probe's "attitude articulation and control system" exhibited some blips that were ultimately patched up. Something similar happened to Voyager 2 during the summer of 2023, when Voyager 1's twin suffered some antenna complications before coming right back online again.

Still, Dodd says this situation has been the most serious since she began working on the historic Voyager mission.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Monisha Ravisetti is Space.com's Astronomy Editor. She covers black holes, star explosions, gravitational waves, exoplanet discoveries and other enigmas hidden across the fabric of space and time. Previously, she was a science writer at CNET, and before that, reported for The Academic Times. Prior to becoming a writer, she was an immunology researcher at Weill Cornell Medical Center in New York. She graduated from New York University in 2018 with a B.A. in philosophy, physics and chemistry. She spends too much time playing online chess. Her favorite planet is Earth.

NASA's Voyager 1 glitch has scientists sad yet hopeful: 'Voyager 2 is still going strong'

NASA's Voyager 1 probe in interstellar space can't phone home (again) due to glitch

Astrophotographer captures stunning close-up views of sunspot region that spawned May's auroras

  • Classical Motion There must be more to this story. Let me see if I have this right. They can receive a carrier. But the modulator gives them junk. Or possibly the processor's memory. And they can send new software. New instructions. So, why not simply use the packet data, to key the carrier on and off. OOK On and Off Keying. Telegraphy. Reply
Admin said: NASA's Voyager 1 deep space probe started glitching last year, and scientists aren't sure they can fix it. NASA's interstellar Voyager 1 spacecraft isn't doing so well — here's what we know : Read more
  • Classical Motion I wish something would kick one of them back to us. I would love to see an analysis of every cubic cm of it. Reply
  • billslugg Modulating the carrier wave would do no good unless the carrier knew what information to send us. The unit that failed takes the raw data and then tells the carrier what to say. Without the modulation unit there is no data to send. Reply
Classical Motion said: I wish something would kick one of them back to us. I would love to see an analysis of every cubic cm of it.
  • Classical Motion I read that they were not sure if it was the modulator or the packet memory. The packet buffer. If they can send patch, it's easy to relocate that buffer into another section of memory. This can be done at several different memory locations to verify if it is a memory problem. If that works, then the modulator is ok. If the modulator fails with all those buffers, then it's the modulator. Turn off modulator. Just enable the carrier for a certain duration for a 1 bit. And turn it off for that certain duration for a 0 bit. One simply rotates that buffer string thru the accumulator at the duration rate, and use status flags to key the transmitter. Very simple and very short code. The packet is nothing more that a 128 BYTE or multiple size string of 1s and 0s. OOK is a very common wireless modulation. That's why I commented on more must be going on. And I would like to see what 30 years naked in space does to man molded matter. Reply
Classical Motion said: I read that they were not sure if it was the modulator or the packet memory. The packet buffer. If they can send patch, it's easy to relocate that buffer into another section of memory. This can be done at several different memory locations to verify if it is a memory problem. If that works, then the modulator is ok. If the modulator fails with all those buffers, then it's the modulator. Turn off modulator. Just enable the carrier for a certain duration for a 1 bit. And turn it off for that certain duration for a 0 bit. One simply rotates that buffer string thru the accumulator at the duration rate, and use status flags to key the transmitter. Very simple and very short code. The packet is nothing more that a 128 BYTE or multiple size string of 1s and 0s. OOK is a very common wireless modulation. That's why I commented on more must be going on. And I would like to see what 30 years naked in space does to man molded matter.
  • damienassurre I think they should make another space craft and have it pick up voyager 1 and bring it back the info it went through would very valuable to stellar travel Reply
damienassurre said: I think they should make another space craft and have it pick up voyager 1 and bring it back the info it went through would very valuable to stellar travel
  • billslugg The newer forms of memory can't be used easily in outer space as their feature size is too small and too easily corrupted by a cosmic ray. Very large, bulky features keep spacecraft memory far smaller than what earthbound computers can enjoy. As far as returning one of the Voyagers to Earth, it would take several thousand years using available technology. Better to wait for more advanced propulsion technologies. Reply
  • View All 20 Comments

Most Popular

  • 2 How auroras on Earth, Saturn and Jupiter could help forecast risky space weather
  • 3 'We awaken to take what is ours:' Watch the haunting new trailer for 'Warhammer 40K: Mechanicus 2' (video)
  • 4 China lands Chang'e 6 sample-return probe on far side of the moon, a lunar success (video)
  • 5 Boeing's 1st Starliner astronaut launch aborted minutes before liftoff (video)

where is voyager 1 right now 2022

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

slide1 background

NASA’s Voyager Team Focuses on Software Patch, Thrusters

slide1 background

NASA Mission Update: Voyager 2 Communications Pause

slide1 background

NASA's Voyager Will Do More Science With New Power Strategy

slide1 background

Edward Stone Retires After 50 Years as NASA Voyager's Project Scientist

slide1 background

Voyager, NASA's Longest-Lived Mission, Logs 45 Years in Space

Voyager 1 distance from earth, voyager 1 distance from sun, voyager 1 one-way light time, voyager 1 cosmic ray data, voyager 2 distance from the earth, voyager 2 distance from the sun, voyager 2 one-way light time, voyager 2 cosmic ray data, what's happening now.

This artist's concept shows NASA's Voyager spacecraft.

Voyager 1 has resumed returning science data from two of its four instruments for the first time since a computer issue arose with the spacecraft in November 2023.

Artist’s illustration of one of the Voyager spacecraft. Credit: Caltech/NASA-JPL

Since November 2023, NASA’s Voyager 1 spacecraft has been sending a steady radio signal to Earth, but the signal does not contain usable data.

Engineers are working to resolve an issue with one of Voyager 1’s three onboard computers, called the flight data system (FDS).

Screenshot of the video 'Voyager at 40: Keep Reaching for the Stars'.

Download the Voyager 40th Anniversary posters.

where is voyager 1 right now 2022

July 1, 2022

21 min read

Record-Breaking Voyager Spacecraft Begin to Power Down

The pioneering probes are still running after nearly 45 years in space, but they will soon lose some of their instruments

By Tim Folger

where is voyager 1 right now 2022

NASA/JPL-Caltech

I f the stars hadn't aligned, two of the most remarkable spacecraft ever launched never would have gotten off the ground. In this case, the stars were actually planets—the four largest in the solar system. Some 60 years ago they were slowly wheeling into an array that had last occurred during the presidency of Thomas Jefferson in the early years of the 19th century. For a while the rare planetary set piece unfolded largely unnoticed. The first person to call attention to it was an aeronautics doctoral student at the California Institute of Technology named Gary Flandro.

It was 1965, and the era of space exploration was barely underway—the Soviet Union had launched Sputnik 1, the first artificial satellite, only eight years earlier. Flandro, who was working part-time at NASA's Jet Propulsion Laboratory in Pasadena, Calif., had been tasked with finding the most efficient way to send a space probe to Jupiter or perhaps even out to Saturn, Uranus or Neptune. Using a favorite precision tool of 20th-century engineers—a pencil—he charted the orbital paths of those giant planets and discovered something intriguing: in the late 1970s and early 1980s, all four would be strung like pearls on a celestial necklace in a long arc with Earth.

This coincidence meant that a space vehicle could get a speed boost from the gravitational pull of each giant planet it passed, as if being tugged along by an invisible cord that snapped at the last second, flinging the probe on its way. Flandro calculated that the repeated gravity assists, as they are called, would cut the flight time between Earth and Neptune from 30 years to 12. There was just one catch: the alignment happened only once every 176 years. To reach the planets while the lineup lasted, a spacecraft would have to be launched by the mid-1970s.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

None

READY FOR LAUNCH: Voyager 2 undergoes testing at NASA’s Jet Propulsion Laboratory before its flight ( left ). The spacecraft lifted off on August 20, 1977. Credit: NASA/JPL-Caltech

As it turned out, NASA would build two space vehicles to take advantage of that once-in-more-than-a-lifetime opportunity. Voyager 1 and Voyager 2, identical in every detail, were launched within 15 days of each other in the summer of 1977. After nearly 45 years in space, they are still functioning, sending data back to Earth every day from beyond the solar system's most distant known planets. They have traveled farther and lasted longer than any other spacecraft in history. And they have crossed into interstellar space, according to our best understanding of the boundary between the sun's sphere of influence and the rest of the galaxy. They are the first human-made objects to do so, a distinction they will hold for at least another few decades. Not a bad record, all in all, considering that the Voyager missions were originally planned to last just four years.

Early in their travels, four decades ago, the Voyagers gave astonished researchers the first close-up views of the moons of Jupiter and Saturn, revealing the existence of active volcanoes and fissured ice fields on worlds astronomers had thought would be as inert and crater-pocked as our own moon. In 1986 Voyager 2 became the first spacecraft to fly past Uranus; three years later it passed Neptune. So far it is the only spacecraft to have made such journeys. Now, as pioneering interstellar probes more than 12 billion miles from Earth, they're simultaneously delighting and confounding theorists with a series of unexpected discoveries about that uncharted region.

Their remarkable odyssey is finally winding down. Over the past three years NASA has shut down heaters and other nonessential components, eking out the spacecrafts' remaining energy stores to extend their unprecedented journeys to about 2030. For the Voyagers' scientists, many of whom have worked on the mission since its inception, it is a bittersweet time. They are now confronting the end of a project that far exceeded all their expectations.*

“We're at 44 and a half years,” says Ralph McNutt, a physicist at the Johns Hopkins University Applied Physics Laboratory (APL), who has devoted much of his career to the Voyagers. “So we've done 10 times the warranty on the darn things.”

The stars may have been cooperating, but at first, Congress wasn't. After Flandro's report, NASA drew up plans for a so-called Grand Tour that would send as many as five probes to the four giant planets and Pluto. It was ambitious. It was expensive. Congress turned it down. “There was this really grand vision,” says Linda Spilker, a JPL planetary scientist who started working on the Voyager missions in 1977, a few months before their launch. “Because of cost, it was whittled back.”

Congress eventually approved a scaled-down version of the Grand Tour, initially called Mariner Jupiter-Saturn 1977, or MJS 77. Two spacecraft were to be sent to just two planets. Nevertheless, NASA's engineers went about designing, somewhat surreptitiously, vehicles capable of withstanding the rigors of a much longer mission. They hoped that once the twin probes proved themselves, their itinerary would be extended to Uranus, Neptune, and beyond.

“Four years—that was the prime mission,” says Suzanne Dodd, who, after a 20-year hiatus from the Voyager team, returned in 2010 as the project manager. “But if an engineer had a choice to put in a part that was 10 percent more expensive but wasn't something that was needed for a four-year mission, they just went ahead and did that. And they wouldn't necessarily tell management.” The fact that the scientists were able to build two spacecraft, and that both are still working, is even more remarkable, she adds.

In terms of both engineering and deep-space navigation, this was new territory. The motto “Failure is not an option” hadn't yet been coined, and at that time it would not have been apt. In the early 1960s NASA had attempted to send a series of spacecraft to the moon to survey future landing sites for crewed missions. After 12 failures, one such effort finally succeeded.

None

GOLDEN RECORD: Each Voyager carries a golden record ( left ) of sounds and images from Earth in case the spacecraft are intercepted by an extraterrestrial civilization. Engineers put the cap on Voyager 1’s record before its launch ( right ). Credit: NASA/JPL-Caltech

“In those days we always launched two spacecraft” because the failure rate was so high, said Donald Gurnett, only partly in jest. Gurnett, a physicist at the University of Iowa and one of the original scientists on the Voyager team, was a veteran of 40 other space missions. He spoke with me a few weeks before his death in January. (In an obituary, his daughter Christina said his only regret was that “he would not be around to see the next 10 years of data returning from Voyager.”)

When the Voyagers were being built, only one spacecraft had used a gravity assist to reach another planet—the Mariner 10 probe got one from Venus while en route to Mercury. But the Voyagers would be attempting multiple assists with margins of error measured in tens of minutes. Jupiter, their first stop, was about 10 times farther from Earth than Mercury. Moreover, the Voyagers would have to travel through the asteroid belt along the way. Before Voyager there had been a big debate about whether spacecraft could get through the asteroid belt “without being torn to pieces,” McNutt says. But in the early 1970s Pioneer 10 and 11 flew through it unscathed—the belt turned out to be mostly empty space—paving the way for Voyager, he says.

To handle all these challenges, the Voyagers, each about the size of an old Volkswagen Beetle, needed some onboard intelligence. So NASA's engineers equipped the vehicles' computers with 69 kilobytes of memory, less than a hundred thousandth the capacity of a typical smartphone. In fact, the smartphone comparison is not quite right. “The Voyager computers have less memory than the key fob that opens your car door,” Spilker says. All the data collected by the spacecraft instruments would be stored on eight-track tape recorders and then sent back to Earth by a 23-watt transmitter—about the power level of a refrigerator light bulb. To compensate for the weak transmitter, both Voyagers carry 12-foot-wide dish antennas to send and receive signals.

“It felt then like we were right on top of the technology,” says Alan Cummings, a physicist at Caltech and another Voyager OG. “I'll tell you, what was amazing is how quickly that whole thing happened.” Within four years the MJS 77 team had built three spacecraft, including one full-scale functioning test model. The spacecraft were rechristened Voyager 1 and 2 a few months before launch.

Although many scientists have worked on the Voyagers over the decades, Cummings can make a unique claim. “I was the last person to touch the spacecraft before they launched,” he says. Cummings was responsible for two detectors designed to measure the flux of electrons and other charged particles when the Voyagers encountered the giant planets. Particles would pass through a small “window” in each detector that consisted of aluminum foil just three microns thick. Cummings worried that technicians working on the spacecraft might have accidentally dented or poked holes in the windows. “So they needed to be inspected right before launch,” he says. “Indeed, I found that one of them was a little bit loose.”

None

Credit: Graphic by Matthew Twombly and Juan Velasco (5W Infographic); Consultants: John Richardson (principal investigator, Voyager Plasma Science, Massachusetts Institute of Technology, Center for Space Research) and Merav Opher (professor, Department of Astronomy, Boston University)

Voyager 1 reached Jupiter in March 1979, 546 days after its launch. Voyager 2, following a different trajectory, arrived in July of that year. Both spacecraft were designed to be stable platforms for their vidicon cameras, which used red, green and blue filters to produce full-color images. They hardly spin at all as they speed through space—their rotational motion is more than 15 times slower than the crawl of a clock's hour hand, minimizing the risk of blurred images. Standing-room crowds at JPL watched as the spacecraft started transmitting the first pictures of Jupiter while still about three or four months away from the planet.

“In all of the main conference rooms and in the hallways, they had these TV monitors set up,” Spilker says. “So as the data came down line by line, each picture would appear on a monitor. The growing anticipation and the expectation of what we were going to see when we got up really, really close—that was tremendously exciting.”

Cummings vividly recalls the day he caught his first glimpse of Jupiter's third-largest moon, Io. “I was going over to a building on the Caltech campus where they were showing a livestream [of Voyager's images],” he says. “I walk in, and there's this big picture of Io, and it's all orange and black. I thought, okay, the Caltech students had pulled a prank, and it's a picture of a poorly made pizza.”

Io's colorful appearance was completely unexpected. Before the Voyagers proved otherwise, the assumption had been that all moons in the solar system would be more or less alike—drab and cratered. No one anticipated the wild diversity of moonscapes the Voyagers would discover around Jupiter and Saturn.

The first hint that there might be more kinds of moons in the heavens than astronomers had dreamed of came while the Voyagers were still about a million miles from Jupiter. One of their instruments—the Low-Energy Charged Particle [LECP] detector system—picked up some unusual signals. “We started seeing oxygen and sulfur ions hitting the detector,” says Stamatios Krimigis, who designed the LECP and is now emeritus head of the space department at Johns Hopkins APL. The density of oxygen and sulfur ions had shot up by three orders of magnitude compared with the levels measured up to that point. At first, his team thought the instrument had malfunctioned. “We scrutinized the data,” Krimigis says, “but there was nothing wrong.”

The Voyagers' cameras soon solved the mystery: Io had active volcanoes. The small world—it is slightly larger than Earth's moon—is now known to be the most volcanically active body in the solar system. “The only active volcanoes we knew of at the time were on Earth,” says Edward Stone, who has been the project scientist for the Voyager missions since 1972. “And here suddenly was a moon that had 10 times as much volcanic activity as Earth.” Io's colors—and the anomalous ions hitting Krimigis's detector—came from elements blasted from the moon's volcanoes. The largest of Io's volcanoes, known as Pele, has blown out plumes 30 times the height of Mount Everest; debris from Pele covers an area about the size of France.

None

The twin spacecraft took a grand tour through the giant planets of the solar system, passing by Jupiter ( 1 , 2 ) and Saturn ( 5 , 6 ) and taking the first close-up views of those planets’ moons. Jupiter’s satellite Europa ( 3 ), for instance, turned out to be covered with ice, and its moon Io ( 4 ) was littered with volcanoes—discoveries that came as a surprise to scientists who had assumed the moons would be gray and crater-pocked like Earth’s. Voyager 2 went on to fly by Uranus ( 7 ) and Neptune ( 8 ), and it is still the only probe to have visited there. Credit: NASA/JPL ( 1 , 2 , 4 , 5 , 6 , 8 ); NASA/JPL/USGS (3); NASA/JPL-Caltech ( 7 )

Altogether, the Voyagers took more than 33,000 photographs of Jupiter and its satellites. It felt like every image brought a new discovery: Jupiter had rings; Europa, one of Jupiter's 53 named moons, was covered with a cracked icy crust now estimated to be more than 60 miles thick. As the spacecraft left the Jupiter system, they got a farewell kick of 35,700 miles per hour from a gravity assist. Without it they would not have been able to overcome the gravitational pull of the sun and reach interstellar space.

At Saturn, the Voyagers parted company. Voyager 1 hurtled through Saturn's rings (taking thousands of hits from dust grains), flew past Titan, a moon shrouded in orange smog, and then headed “north” out of the plane of the planets. Voyager 2 continued alone to Uranus and Neptune. In 1986 Voyager 2 found 10 new moons around Uranus and added the planet to the growing list of ringed worlds. Just four days after Voyager 2's closest approach to Uranus, however, its discoveries were overshadowed when the space shuttle Challenger exploded shortly after launch. All seven of Challenger 's crew members were killed, including Christa McAuliffe, a high school teacher from New Hampshire who would have been the first civilian to travel into space.

Three years later, passing about 2,980 miles above Neptune's azure methane atmosphere, Voyager 2 measured the highest wind speeds of any planet in the solar system: up to 1,000 mph. Neptune's largest moon, Triton, was found to be one of the coldest places in the solar system, with a surface temperature of −391 degrees Fahrenheit (−235 degrees Celsius). Ice volcanoes on the moon spewed nitrogen gas and powdery particles five miles into its atmosphere.

Voyager 2's images of Neptune and its moons would have been the last taken by either of the spacecraft had it not been for astronomer Carl Sagan, who was a member of the mission's imaging team. With the Grand Tour officially completed, NASA planned to turn off the cameras on both probes. Although the mission had been extended with the hope that the Voyagers would make it to interstellar space—it had been officially renamed the Voyager Interstellar Mission—there would be no photo ops after Neptune, only the endless void and impossibly distant stars.

None

ERUPTION: The discovery of the volcano Pele, shown in this photograph from Voyager 1, confirmed that Jupiter’s moon hosts active volcanism. Credit: NASA/JPL/USGS

Sagan urged NASA officials to have Voyager 1 transmit one last series of images. So, on Valentine's Day in 1990, the probe aimed its cameras back toward the inner solar system and took 60 final shots. The most haunting of them all, made famous by Sagan as the “Pale Blue Dot,” captured Earth from a distance of 3.8 billion miles. It remains the most distant portrait of our planet ever taken. Veiled by wan sunlight that reflected off the camera's optics, Earth is barely visible in the image. It doesn't occupy even a full pixel.

Sagan, who died in 1996, “worked really hard to convince NASA that it was worth looking back at ourselves,” Spilker says, “and seeing just how tiny that pale blue dot was.”

Both Voyagers are now so far from Earth that a one-way radio signal traveling at the speed of light takes almost 22 hours to reach Voyager 1 and just over 18 to catch up with Voyager 2. Every day they move away by another three to four light-seconds. Their only link to Earth is NASA's Deep Space Network, a trio of tracking complexes spaced around the globe that enables uninterrupted communication with spacecraft as Earth rotates. As the Voyagers recede from us in space and time, their signals are becoming ever fainter. “Earth is a noisy place,” says Glen Nagle, outreach and communications manager at the Deep Space Network's facility in Canberra, Australia. “Radios, televisions, cell phones—everything makes noise. And so it gets harder and harder to hear these tiny whispers from the spacecraft.”

Faint as they are, those whispers have upended astronomers' expectations of what the Voyagers would find as they entered the interstellar phase of the mission. Stone and other Voyager scientists I spoke with cautioned me not to conflate the boundary of interstellar space with that of the solar system. The solar system includes the distant Oort cloud, a spherical collection of cometlike bodies bound by the sun's gravity that may stretch halfway to the closest star. The Voyagers won't reach its near edge for at least another 300 years. But interstellar space lies much closer at hand. It begins where a phenomenon called the solar wind ends.

Like all stars, the sun emits a constant flow of charged particles and magnetic fields—the solar wind. Moving at hypersonic speeds, the wind blows out from the sun like an inflating balloon, forming what astronomers call the heliosphere. As the solar wind billows into space, it pulls the sun's magnetic field along for the ride. Eventually pressure from interstellar matter checks the heliosphere's expansion, creating a boundary—preceded by an enormous shock front, the “termination shock”—with interstellar space. Before the Voyagers' journeys, estimates of the distance to that boundary with interstellar space, known as the heliopause, varied wildly.

“Frankly, some of them were just guesses,” according to Gurnett. One early guesstimate located the heliopause as close as Jupiter. Gurnett's own calculations, made in 1993, set the distance at anywhere from 116 to 177 astronomical units, or AU—about 25 times more distant. (One AU is the distance between Earth and the sun, equal to 93 million miles.) Those numbers, he says, were not very popular with his colleagues. By 1993 Voyager 1 already had 50 AU on its odometer. “If [the heliopause] was at 120 AU, that meant we had another 70 AU to go.” If Gurnett was right, the Voyagers, clipping along at about 3.5 AU a year, wouldn't exit the heliosphere for at least another two decades.

That prediction raised troubling questions: would the Voyagers—or the support of Congress—last that long? The mission's funding had been extended on the expectation that the spacecraft would cross the heliopause at about 50 AU. But the spacecraft left that milestone behind without finding any of the anticipated signs of interstellar transit. Astronomers had expected the Voyagers to detect a sudden surge in galactic cosmic rays—high-energy particles sprayed like shrapnel at nearly the speed of light from supernovae and other deep-space cataclysms. The vast magnetic cocoon formed by the heliosphere deflects most low-energy cosmic rays before they can reach the inner solar system. “[It] shields us from at least 75 percent of what's out there,” Stone says.

The Voyager ground team was also waiting for the spacecraft to register a shift in the prevailing magnetic field. The interstellar magnetic field, thought to be generated by nearby stars and vast clouds of ionized gases, would presumably have a different orientation from the magnetic field of the heliosphere. But the Voyagers had detected no such change.

None

Gurnett's 1993 estimates were prescient. Almost 20 years passed before one of the Voyagers finally made it to the heliopause. During that time the mission narrowly survived threats to its funding, and the Voyager team shrank from hundreds of scientists and engineers to a few dozen close-knit lifers. Most of them remain on the job today. “When you have such a long-lived mission, you start to regard people like family,” Spilker says. “We had our kids around the same time. We'd take vacations together. We're spanning multiple generations now, and some of the younger people on Voyager were not even born [when the spacecraft] launched.”

The tenacity and commitment of that band of brothers and sisters were rewarded on August 25, 2012, when Voyager 1 finally crossed the heliopause. But some of the data it returned were baffling. “We delayed announcing that we had reached interstellar space because we couldn't come to an agreement on the fact,” Cummings says. “There was lots of debate for about a year.”

Although Voyager 1 had indeed found the expected jump in plasma density—its plasma-wave detector, an instrument designed by Gurnett, inferred an 80-fold increase—there was no sign of a change in the direction of the ambient magnetic field. If the vehicle had crossed from an area permeated by the sun's magnetic field to a region where the magnetic field derived from other stars, shouldn't that switch have been noticeable? “That was a shocker,” Cummings says. “And that still bothers me. But a lot of people are coming to grips with it.”

When Voyager 2 reached the interstellar shoreline in November 2018, it, too, failed to detect a magnetic field shift. And the spacecraft added yet another puzzle: it encountered the heliopause at 120 AU from Earth—the same distance marked by its twin six years earlier. That did not jibe with any theoretical models, all of which said the heliosphere should expand and contract in sync with the sun's 11-year cycle. During that period the solar wind ebbs and surges. Voyager 2 arrived when the solar wind was peaking, which, if the models were correct, should have pushed the heliopause farther out than 120 AU. “It was unexpected by all the theorists,” Krimigis says. “I think the modeling, in terms of the findings of the Voyagers, has been found wanting.”

Now that the Voyagers are giving theorists some real field data, their models of the interaction between the heliosphere and the interstellar environment are becoming more complex. “The sort of general picture is that [our sun] emerged from a hot, ionized region” and entered a spotty, partly ionized area in the galaxy, says Gary Zank, an astrophysicist at the University of Alabama in Huntsville. The hot region likely formed in the aftermath of a supernova—some nearby ancient star, or perhaps a few, exploded at the end of its life and heated up the space, stripping electrons off their atoms in the process. The boundary around that region can be thought of as “kind of like the seashore, with all the water and the waves swirling and mixed up. We're in that kind of turbulent region ... magnetic fields get twisted up, turned around. It's not like the smooth magnetic fields that theorists usually like to draw,” although the amount of turbulence seen can differ depending on the type of observation. The Voyagers' data show little field variation at large scales but many small-scale fluctuations around the heliopause, caused by the heliosphere's influence on the interstellar medium. At some point, it is thought, the spacecraft will leave those roiling shoals behind and at last encounter the unalloyed interstellar magnetic field.

Or maybe that picture is completely wrong. A few researchers believe that the Voyagers have not yet left the heliosphere. “There is no reason for the magnetic fields in the heliosphere and the interstellar medium to have exactly the same orientation,” says Len A. Fisk, a space plasma scientist at the University of Michigan and a former NASA administrator. For the past several years Fisk and George Gloeckler, a colleague at Michigan and a longtime Voyager mission scientist, have been working on a model of the heliosphere that pushes its edge out by another 40 AU.

Most people working in the field, however, have been convinced by the dramatic uptick in galactic cosmic rays and plasma density the Voyagers measured. “Given that,” Cummings says, “it's very difficult to argue that we're not really in interstellar space. But then again, it's not like everything fits. That's why we need an interstellar probe.”

McNutt has been pushing for such a mission for decades. He and his colleagues at Johns Hopkins recently completed a nearly 500-page report outlining plans for an interstellar probe that would launch in 2036 and potentially could reach the heliosphere within 15 years, shaving 20 years off Voyager 1's flight time. And unlike the Voyager missions, the interstellar probe would be designed specifically to study the outer edge of the heliosphere and its environs. Within the next two years the National Academies of Sciences, Engineering, and Medicine will decide whether the mission should be one of NASA's priorities for the next decade.

An interstellar probe could answer one of the most fundamental questions about the heliosphere. “If I'm looking from the outside, what the devil does this structure look like?” McNutt asks. “We really don't know. It's like trying to understand what a goldfish bowl looks like from the point of view of the goldfish. We [need to] be able to see the bowl from the outside.” In some models, as the heliosphere cruises along at 450,000 mph, interstellar matter flows smoothly past it, like water around the bow of a ship, resulting in an overall cometlike shape. One recent computer model, developed by astronomer Merav Opher and her colleagues at Boston University, predicts that more turbulent dynamics give the heliosphere a shape like a cosmic croissant.

“You can start multiple fights at any good science conference about that,” McNutt says, “but it's going to take getting out there and actually making some measurements to be able to see what's going on. It would be nice to know what the neighborhood looks like.”

Some things outlive their purpose—answering machines, VCRs, pennies. Not the Voyagers—they transcended theirs, using 50-year-old technology. “The amount of software on these instruments is slim to none,” Krimigis says. “There are no microprocessors—they didn't exist!” The Voyagers' designers could not rely on thousands of lines of code to help operate the spacecraft. “On the whole,” Krimigis says, “I think the mission lasted so long because almost everything was hardwired. Today's engineers don't know how to do this. I don't know if it's even possible to build such a simple spacecraft [now]. Voyager is the last of its kind.”

It won't be easy to say goodbye to these trailblazing vehicles. “It's hard to see it come to an end,” Cummings says. “But we did achieve something really amazing. It could have been that we never got to the heliopause, but we did.”

Voyager 2 now has five remaining functioning instruments, and Voyager 1 has four. All are powered by a device that converts heat from the radioactive decay of plutonium into electricity. But with the power output decreasing by about four watts a year, NASA has been forced into triage mode. Two years ago the mission's engineers turned off the heater for the cosmic-ray detector, which had been crucial in determining the heliopause transit. Everyone expected the instrument to die.

“The temperature dropped like 60 or 70 degrees C, well outside any tested operating limits,” Spilker says, “and the instrument kept working. It was incredible.”

The last two Voyager instruments to turn off will probably be a magnetometer and the plasma science instrument. They are contained in the body of the spacecraft, where they are warmed by heat emitted from computers. The other instruments are suspended on a 43-foot-long fiberglass boom. “And so when you turn the heaters off,” Dodd says, “those instruments get very, very cold.”

How much longer might the Voyagers last? “If everything goes really well, maybe we can get the missions extended into the 2030s,” Spilker says. “It just depends on the power. That's the limiting point.”

None

TINY SPECK: Among Voyager 1’s last photographs was this shot of Earth seen from 3.8 billion miles away, dubbed the “Pale Blue Dot” by Voyager scientist Carl Sagan. Credit: NASA/JPL-Caltech

Even after the Voyagers are completely muted, their journeys will continue. In another 16,700 years, Voyager 1 will pass our nearest neighboring star, Proxima Centauri, followed 3,600 years later by Voyager 2. Then they will continue to circle the galaxy for millions of years. They will still be out there, more or less intact, eons after our sun has collapsed and the heliosphere is no more, not to mention one Pale Blue Dot. At some point in their travels, they may manage to convey a final message. It won't be transmitted by radio, and if it's received, the recipients won't be human.

The message is carried on another kind of vintage technology: two records. Not your standard plastic version, though. These are made of copper, coated with gold and sealed in an aluminum cover. Encoded in the grooves of the Golden Records , as they are called, are images and sounds meant to give some sense of the world the Voyagers came from. There are pictures of children, dolphins, dancers and sunsets; the sounds of crickets, falling rain and a mother kissing her child; and 90 minutes of music, including Bach's Brandenburg Concerto No. 2 and Chuck Berry's “Johnny B. Goode.”

And there is a message from Jimmy Carter, who was the U.S. president when the Voyagers were launched. “We cast this message into the cosmos,” it reads in part. “We hope someday, having solved the problems we face, to join a community of galactic civilizations. This record represents our hope and our determination, and our good will in a vast and awesome universe.”

*Editor’ Note (6/22/22): This paragraph was edited after posting to correct the description of when NASA began shutting down nonessential components of the Voyager spacecraft.

Tim Folger is a freelance journalist who writes for National Geographic , Discover , and other national publications.

Scientific American Magazine Vol 327 Issue 1

NASA’s Voyager 1 Is Glitching, Sending Nonsense From Interstellar Space

The aging spacecraft, launched in 1977, is transmitting a gibberish pattern of ones and zeros back to Earth

Margaret Osborne

Margaret Osborne

Daily Correspondent

Illustration of a spacecraft

NASA’s Voyager 1 probe is experiencing a glitch that’s causing it to send a repeating, gibberish pattern of ones and zeroes back to Earth, the agency announced this week. The spacecraft is still able to receive and execute commands sent to it, but it’s unable to transmit back science or engineering data. 

After ruling out other possibilities, the Voyager team determined the spacecraft’s issues stem from one of its three computers, called the flight data system (FDS). Last weekend, engineers tried to restart the FDS to see whether they could resolve the problem, but the probe still isn’t returning usable data, according to NASA. 

Launched in 1977, Voyager 1 and its twin spacecraft Voyager 2 are NASA’s longest-operating mission. They are the only probes to ever explore interstellar space , or the vast area between stars. The spacecraft were initially launched to study Jupiter and Saturn, and they were only intended to last five years . But after making a series of discoveries—including spotting active volcanoes on Jupiter’s moon Io—NASA extended their mission. Both spacecraft carry a “ golden record ,” a 12-inch, gold-plated, copper disk that contains sounds and images to represent humankind in case any extraterrestrials ever encounter them.

My twin Voyager 1 is having a bit of trouble with its Flight Data System, but our team is on it! Details from @NASAJPL below. -V2 https://t.co/DRnxCzYLv5 — NASA Voyager (@NASAVoyager) December 12, 2023

By today’s standards, the technology aboard the Voyager crafts is ancient. Their computers only have 69.63 kilobytes of memory —about enough to store an average jpeg file. To make room for new observations, they must erase data after sending it to Earth.

“The Voyager computers have less memory than the key fob that opens your car door,” Linda Spilker , a planetary scientist who started working on the Voyager missions in 1977, told Scientific American ’s Tim Folger last year.

But the simple, yet hardy design of the Voyagers has contributed to their longevity and allowed them to hop between missions to collect valuable data. Still, both aging spacecraft have experienced glitches. Over the summer, a human error caused Voyager 2’s antenna to tilt two degrees away from Earth , leading researchers to lose contact with the craft for more than a week before its functions returned to normal. In 2022, an issue in the attitude articulation and control system (AACS) of Voyager 1 caused it to send “garbled information about its health and activities to mission controllers, despite operating normally,” per NASA . Engineers were eventually able to solve the glitch. 

Right now, Voyager 1 is hurtling through space about 15 billion miles from Earth and Voyager 2 is more than 12.6 billion miles away. Because the spacecraft are so distant, commands from mission controllers take 22.5 hours to reach Voyager 1. This means it takes 45 hours to determine whether a command to the spacecraft has had the intended outcome. NASA says it could take several weeks to develop a new plan to fix the current FDS problem. 

“Finding solutions to challenges the probes encounter often entails consulting original, decades-old documents written by engineers who didn’t anticipate the issues that are arising today,” NASA says in its statement. “As a result, it takes time for the team to understand how a new command will affect the spacecraft’s operations in order to avoid unintended consequences.” 

Calla Cofield, a media relations specialist at NASA’s Jet Propulsion Laboratory, which manages the mission, tells CNN ’s Ashley Strickland engineers are now working to find the underlying cause of the problem before figuring out next steps. 

“The Voyagers are performing far, far past their prime missions and longer than any other spacecraft in history,” Cofield tells the publication. “So, while the engineering team is working hard to keep them alive, we also fully expect issues to arise.”

Get the latest stories in your inbox every weekday.

Margaret Osborne

Margaret Osborne | | READ MORE

Margaret Osborne is a freelance journalist based in the southwestern U.S. Her work has appeared in the  Sag Harbor Express  and has aired on  WSHU Public Radio.

IMAGES

  1. NASA's Voyager 1

    where is voyager 1 right now 2022

  2. Where Is Voyager 1 Now? [2022]

    where is voyager 1 right now 2022

  3. Voyager 1

    where is voyager 1 right now 2022

  4. Watch Where is Voyager 1? Location of Nasa space probe explained after

    where is voyager 1 right now 2022

  5. Voyager 1

    where is voyager 1 right now 2022

  6. Where is Voyager 1 now? History of Voyager 1 Spacecraft

    where is voyager 1 right now 2022

VIDEO

  1. Voyager 1 Suddenly Received an ALARMING REPLY From a Nearby Star

  2. Voyager 1 Probe Is Started Sending Mysterious Data From Interstellar Space. @thecosmosnews

  3. How Far is Voyager-1 Spacecraft Now

  4. Voyager 1 Just Announced That It Has Detected An ADVANCED And UNKNOWN Object In Space

  5. Voyager 1 Resumes Sending Updates to Earth

  6. कहाँ है वायेजर 2

COMMENTS

  1. Voyager

    where are they now FAQs. frequently asked questions; fact sheet; Fast Facts; Q&A with Ed Stone; mission Mission Status ... Both Voyager 1 and Voyager 2 have reached "Interstellar space" and each continue their unique journey through the Universe. In the NASA Eyes on the Solar System app, you can see the real spacecraft trajectories of the ...

  2. Where Are They Now?

    Voyager 1 Present Position. This simulated view of the solar system allows you to explore the planets, moons, asteroids, comets, and spacecraft exploring our solar system. You can also fast-forward and rewind in real-time. NASA/JPL-Caltech.

  3. NASA's Voyager 1 Resumes Sending Engineering Updates to Earth

    The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars). Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally.

  4. The most distant spacecraft in the solar system

    We now have five spacecraft that have either reached the edges of our solar system or are fast approaching it: Pioneer 10, Pioneer 11, Voyager 1, Voyager 2 and New Horizons. Most of these probes ...

  5. Voyager 1

    Voyager 1 is a space probe launched by NASA on September 5, 1977, to study the outer Solar System and beyond. It is currently the most distant human-made object from Earth, having traveled over 14 billion miles (23 billion kilometers) from the Sun. Voyager 1's mission has included flybys of Jupiter and Saturn, with the goal of studying their moons, rings, and magnetic fields.

  6. Inside NASA's monthslong effort to rescue the Voyager 1 mission

    Inside NASA's 5-month fight to save the Voyager 1 mission in interstellar space. The Voyager 1 probe is the most distant human-made object in existence. After a major effort to restore ...

  7. Voyager 1 Tracker

    Voyager 1 live position and data. This page shows Voyager 1 location and other relevant astronomical data in real time. The celestial coordinates, magnitude, distances and speed are updated in real time and are computed using high quality data sets provided by the JPL Horizons ephemeris service (see acknowledgements for details). The sky map shown in the background represents a rectangular ...

  8. Voyager

    Mission Overview. The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-40-year journey since their 1977 launches, they each are much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between ...

  9. Voyager 1's Revival Offers Inspiration for Everyone on Earth

    Voyager 1 sent back spectacular photos of Jupiter and its giant red spot. It showed how dynamic the Jovian atmosphere was, with clouds and storms. It also took pictures of Jupiter's moon Io ...

  10. Nasa Voyager 1: What does it do and where in space is it right now?

    Voyager 1 sends back different types of data to Earth, with significant discoveries emerging in the 1970s/1980s. It discovered two Jupiter moons, Thebe and Metis, as well as a thin ring around the ...

  11. Voyager 1: Facts about Earth's farthest spacecraft

    The probe launched on Sept. 5, 1977 — about two weeks after its twin Voyager 2 — and as of August 2022 is approximately 14.6 billion miles (23.5 billion kilometers) away from our planet ...

  12. NASA gets Voyager 1 talking again

    Voyager 1 has yielded revelations about our Solar System no one could have predicted. Currently, Voyager 1 is more than 23.4 billion kilometers or 14.6 billion miles (and gaining, most of the time ...

  13. Where is Voyager 1 now? History of Voyager 1 Spacecraft

    We don't really know exactly where the craft is now. According to NASA official data, as of February 17, 1998, the probe moved 10.4 billion km away from our planet. In 2013, some media sources wrote that Voyager 1 will be leaving the solar system. However, this information was wrong.

  14. Where are the Voyagers now?

    Voyager 2 is now more than 96 AU from the sun, traveling at a speed of 15.5 kilometers per second (9.6 miles per second). Both spacecraft are moving considerably faster than Pioneers 10 and 11, two earlier spacecraft that became the first robotic visitors to fly past Jupiter and Saturn in the mid-70s. This processed color image of Jupiter was ...

  15. NASA's interstellar Voyager 1 spacecraft isn't doing so well

    Since late 2023, engineers have been trying to get the Voyager spacecraft back online. On Dec. 12, 2023, NASA shared some worrisome news about Voyager 1, the first probe to walk away from our ...

  16. Voyager

    This tells how long it would take a radio signal transmitted right now, traveling at the speed of light, to get either from Earth to Voyager 1 or from Voyager 1 to Earth. ... Data from this instrument suggested that Voyager 1 entered interstellar space on Aug. 25, 2012, when the inside particles (green) dipped closer to 0.0 and the outside ...

  17. Record-Breaking Voyager Spacecraft Begin to Power Down

    Both Voyagers are now so far from Earth that a one-way radio signal traveling at the speed of light takes almost 22 hours to reach Voyager 1 and just over 18 to catch up with Voyager 2.

  18. Why are the Voyager spacecraft getting closer to Earth?

    Voyager 1 moves at a speed of 38,210 miles per hour (17 km/s). ... That is why the distance to both of us is decreasing right now! ... 2022. Bottom line: The Voyager spacecraft are on a never ...

  19. Where Is Voyager 1 Now? [2022]

    Voyager 1 is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and interstellar space beyon...

  20. Voyager 1

    Heliocentric positions of the five interstellar probes (squares) and other bodies (circles) until 2020, with launch and flyby dates. Markers denote positions on 1 January of each year, with every fifth year labelled. Plot 1 is viewed from the north ecliptic pole, to scale. Plots 2 to 4 are third-angle projections at 20% scale. In the SVG file, hover over a trajectory or orbit to highlight it ...

  21. NASA's Voyager 1 Is Glitching, Sending Nonsense From Interstellar Space

    In 2022, an issue in the ... Right now, Voyager 1 is hurtling through space about 15 billion miles from Earth and Voyager 2 is more than 12.6 billion miles away. Because the spacecraft are so ...

  22. Voyager 1 Has Made "Impossible" Discovery after 45 Years ...

    Voyager 1 Has Made "Impossible" Discovery after 45 Years in Space! NASA's twin Voyager probes, which were launched in 1977, awed the world with historic jour...